Barotropic QG beta-plane turbulence over topography
This example can be run online via . Also, it can be viewed as a Jupyter notebook via
.
An idealized version of the Southern Ocean. We solve the barotropic quasi-geostrophic eddy dynamics in a flud with variable depth $H-h(x,y)$. We also include an "Antarctic Circumpolar Current," i.e., a domain-average zonal velocity $U(t)$ which is forced by constant wind stress $F$ and influenced by bottom drag and topographic form stress. The equations solved are: $\partial_t \nabla^2\psi + \mathsf{J}(\psi-U y, \nabla^2\psi + \beta y + \eta) = -\mu\nabla^2\psi$ and $\partial_t U = F - \mu U - \langle\psi\partial_x\eta\rangle$.
using FourierFlows, Plots, Printf
using FFTW: irfft
import GeophysicalFlows.BarotropicQG
import GeophysicalFlows.BarotropicQG: energy, meanenergy, enstrophy, meanenstrophy
Choosing a device: CPU or GPU
dev = CPU() # Device (CPU/GPU)
Numerical parameters and time-stepping parameters
nx = 128 # 2D resolution = nx^2
stepper = "FilteredRK4" # timestepper
dt = 0.1 # timestep
nsteps = 10000 # total number of time-steps
nsubs = 25 # number of time-steps for intermediate logging/plotting (nsteps must be multiple of nsubs)
Physical parameters
Lx = 2π # domain size
ν = 4e-15 # viscosity
nν = 4 # viscosity order
f0 = -1.0 # Coriolis parameter
β = 1.4015 # the y-gradient of planetary PV
μ = 1e-2 # linear drag
F = 0.0012 # normalized wind stress forcing on domain-averaged zonal flow U(t) flow
Define the topographic potential vorticity, $f_0 h(x, y)/H$
topoPV(x, y) = 2cos(4x)*cos(4y)
and the forcing function $F$ (here forcing is constant in time) that acts on the domain-averaged $U$ equation.
calcFU(t) = F
Problem setup
We initialize a Problem
by providing a set of keyword arguments,
prob = BarotropicQG.Problem(nx=nx, Lx=Lx, f0=f0, β=β, eta=topoPV,
calcFU=calcFU, ν=ν, nν=nν, μ=μ, dt=dt, stepper=stepper, dev=dev)
and define some shortcuts.
sol, cl, vs, pr, gr = prob.sol, prob.clock, prob.vars, prob.params, prob.grid
x, y = gr.x, gr.y
Setting initial conditions
Our initial condition is simply fluid at rest.
BarotropicQG.set_zeta!(prob, zeros(gr.nx, gr.ny))
Diagnostics
Create Diagnostics – energy
, meanenergy
, enstrophy
, and meanenstrophy
functions are imported at the top.
E = Diagnostic(energy, prob; nsteps=nsteps)
Q = Diagnostic(enstrophy, prob; nsteps=nsteps)
Emean = Diagnostic(meanenergy, prob; nsteps=nsteps)
Qmean = Diagnostic(meanenstrophy, prob; nsteps=nsteps)
diags = [E, Emean, Q, Qmean]
Output
We choose folder for outputing .jld2
files and snapshots (.png
files).
filepath = "."
plotpath = "./plots_barotropicqgtopography"
plotname = "snapshots"
filename = joinpath(filepath, "barotropicqgtopography.jld2")
Do some basic file management,
if isfile(filename); rm(filename); end
if !isdir(plotpath); mkdir(plotpath); end
and then create Output.
get_sol(prob) = sol # extracts the Fourier-transformed solution
get_u(prob) = irfft(im*gr.lr.*gr.invKrsq.*sol, gr.nx)
out = Output(prob, filename, (:sol, get_sol), (:u, get_u))
Visualizing the simulation
We define a function that plots the potential vorticity field and the evolution of energy and enstrophy.
function plot_output(prob)
pq = heatmap(x, y, vs.q,
c = :balance,
clim = (-2, 2),
aspectratio = 1,
xlims = (-gr.Lx/2, gr.Lx/2),
ylims = (-gr.Ly/2, gr.Ly/2),
xticks = -3:3,
yticks = -3:3,
xlabel = "x",
ylabel = "y",
title = "∇²ψ + η",
framestyle = :box)
pE = plot(2,
label = ["eddy energy" "mean energy"],
linewidth = 2,
alpha = 0.7,
xlims = (-0.1, 10.1),
ylims = (0, 0.0008),
xlabel = "μt")
pQ = plot(2,
label = ["eddy enstrophy" "mean enstrophy"],
linewidth = 2,
alpha = 0.7,
xlims = (-0.1, 10.1),
ylims = (-0.02, 0.12),
xlabel = "μt")
l = @layout [ a{0.5w} grid(2, 1) ]
p = plot(pq, pE, pQ, layout=l, size = (900, 600))
return p
end
Time-stepping the Problem
forward
We time-step the Problem
forward in time.
p = plot_output(prob)
startwalltime = time()
anim = @animate for j=0:Int(nsteps/nsubs)
cfl = cl.dt*maximum([maximum(vs.U.+vs.u)/gr.dx, maximum(vs.v)/gr.dy])
log = @sprintf("step: %04d, t: %d, cfl: %.2f, E: %.4f, Q: %.4f, walltime: %.2f min",
cl.step, cl.t, cfl, E.data[E.i], Q.data[Q.i], (time()-startwalltime)/60)
if j%(2000/nsubs)==0; println(log) end
p[1][1][:z] = Array(vs.q)
p[1][:title] = "∇²ψ + η, μt="*@sprintf("%.2f", μ*cl.t)
push!(p[2][1], μ*E.t[E.i], E.data[E.i])
push!(p[2][2], μ*Emean.t[Emean.i], Emean.data[Emean.i])
push!(p[3][1], μ*Q.t[Q.i], Q.data[Q.i])
push!(p[3][2], μ*Qmean.t[Qmean.i], Qmean.data[Qmean.i])
stepforward!(prob, diags, nsubs)
BarotropicQG.updatevars!(prob)
end
mp4(anim, "barotropicqg_acc.mp4", fps=18)
Note that since mean flow enstrophy is $Q_U = \beta U$ it can attain negative values.
Save
Finally save the last snapshot.
savename = @sprintf("%s_%09d.png", joinpath(plotpath, plotname), cl.step)
savefig(savename)
This page was generated using Literate.jl.