Forced-dissipative barotropic QG beta-plane turbulence
A simulation of forced-dissipative barotropic quasi-geostrophic turbulence on a beta plane. The dynamics include linear drag and stochastic excitation.
Install dependencies
First let's make sure we have all required packages installed.
using Pkg
pkg"add GeophysicalFlows, CUDA, JLD2, CairoMakie, Statistics"
Let's begin
Let's load GeophysicalFlows.jl
and some other packages we need.
using GeophysicalFlows, CUDA, JLD2, CairoMakie, Random, Printf
using Statistics: mean
using LinearAlgebra: ldiv!
parsevalsum = FourierFlows.parsevalsum
record = CairoMakie.record # disambiguate between CairoMakie.record and CUDA.record
Choosing a device: CPU or GPU
dev = CPU() # Device (CPU/GPU)
Numerical parameters and time-stepping parameters
n = 128 # 2D resolution: n² grid points
stepper = "FilteredRK4" # timestepper
dt = 0.05 # timestep
nsteps = 8000 # total number of timesteps
save_substeps = 10 # number of timesteps after which output is saved
Physical parameters
L = 2π # domain size
β = 10.0 # planetary PV gradient
μ = 0.01 # bottom drag
Forcing
We force the vorticity equation with stochastic excitation that is delta-correlated in time and while spatially homogeneously and isotropically correlated. The forcing has a spectrum with power in a ring in wavenumber space of radius $k_f$ (forcing_wavenumber
) and width $δ_f$ (forcing_bandwidth
), and it injects energy per unit area and per unit time equal to $\varepsilon$. That is, the forcing covariance spectrum is proportional to $\exp{[-(|\bm{k}| - k_f)^2 / (2 δ_f^2)]}$.
forcing_wavenumber = 14.0 * 2π/L # the forcing wavenumber, `k_f`, for a spectrum that is a ring in wavenumber space
forcing_bandwidth = 1.5 * 2π/L # the width of the forcing spectrum, `δ_f`
ε = 0.001 # energy input rate by the forcing
grid = TwoDGrid(dev; nx=n, Lx=L)
K = @. sqrt(grid.Krsq) # a 2D array with the total wavenumber
forcing_spectrum = @. exp(-(K - forcing_wavenumber)^2 / (2 * forcing_bandwidth^2))
@CUDA.allowscalar forcing_spectrum[grid.Krsq .== 0] .= 0 # ensure forcing has zero domain-average
ε0 = parsevalsum(forcing_spectrum .* grid.invKrsq / 2, grid) / (grid.Lx * grid.Ly)
@. forcing_spectrum *= ε/ε0 # normalize forcing to inject energy at rate ε
We reset of the random number generator for reproducibility
if dev==CPU(); Random.seed!(1234); else; CUDA.seed!(1234); end
Next we construct function calcF!
that computes a forcing realization every timestep. For that, we call randn!
to obtain complex numbers whose real and imaginary part are normally-distributed with zero mean and variance 1/2.
function calcF!(Fh, sol, t, clock, vars, params, grid)
randn!(Fh)
@. Fh *= sqrt(forcing_spectrum) / sqrt(clock.dt)
return nothing
end
Problem setup
We initialize a Problem
by providing a set of keyword arguments. We use stepper = "FilteredRK4"
. Filtered timesteppers apply a wavenumber-filter at every time-step that removes enstrophy at high wavenumbers and, thereby, stabilize the problem, despite that we use the default viscosity coefficient ν=0
.
prob = SingleLayerQG.Problem(dev; nx=n, Lx=L, β, μ, dt, stepper,
calcF=calcF!, stochastic=true)
Let's define some shortcuts.
sol, clock, vars, params, grid = prob.sol, prob.clock, prob.vars, prob.params, prob.grid
x, y = grid.x, grid.y
Lx, Ly = grid.Lx, grid.Ly
First let's see how a forcing realization looks like. Note that when plotting, we decorate the variable to be plotted with Array()
to make sure it is brought back on the CPU when vars
live on the GPU.
calcF!(vars.Fh, sol, 0.0, clock, vars, params, grid)
fig = Figure()
ax = Axis(fig[1, 1],
xlabel = "x",
ylabel = "y",
aspect = 1,
title = "a forcing realization",
limits = ((-Lx/2, Lx/2), (-Ly/2, Ly/2)))
heatmap!(ax, x, y, Array(irfft(vars.Fh, grid.nx));
colormap = :balance, colorrange = (-8, 8))
fig
Setting initial conditions
Our initial condition is simply fluid at rest.
SingleLayerQG.set_q!(prob, device_array(dev)(zeros(grid.nx, grid.ny)))
Diagnostics
Create Diagnostic – energy
and enstrophy
are functions imported at the top.
E = Diagnostic(SingleLayerQG.energy, prob; nsteps, freq=save_substeps)
Z = Diagnostic(SingleLayerQG.enstrophy, prob; nsteps, freq=save_substeps)
diags = [E, Z] # A list of Diagnostics types passed to "stepforward!" will be updated every timestep.
Output
We choose folder for outputing .jld2
files and snapshots (.png
files).
filepath = "."
plotpath = "./plots_forcedbetaturb"
plotname = "snapshots"
filename = joinpath(filepath, "singlelayerqg_forcedbeta.jld2")
Do some basic file management,
if isfile(filename); rm(filename); end
if !isdir(plotpath); mkdir(plotpath); end
and then create Output.
get_sol(prob) = Array(prob.sol) # extracts the Fourier-transformed solution
function get_u(prob)
vars, grid, sol = prob.vars, prob.grid, prob.sol
@. vars.qh = sol
SingleLayerQG.streamfunctionfrompv!(vars.ψh, vars.qh, params, grid)
ldiv!(vars.u, grid.rfftplan, -im * grid.l .* vars.ψh)
return Array(vars.u)
end
output = Output(prob, filename, (:qh, get_sol), (:u, get_u))
We first save the problem's grid and other parameters so we can use them later.
saveproblem(output)
and then call saveoutput(output)
once to save the initial state.
saveoutput(output)
Time-stepping the Problem
forward
We time-step the Problem
forward in time.
startwalltime = time()
while clock.step <= nsteps
if clock.step % 50save_substeps == 0
cfl = clock.dt * maximum([maximum(vars.u) / grid.dx, maximum(vars.v) / grid.dy])
log = @sprintf("step: %04d, t: %d, cfl: %.2f, E: %.4f, Q: %.4f, walltime: %.2f min",
clock.step, clock.t, cfl, E.data[E.i], Z.data[Z.i], (time()-startwalltime)/60)
println(log)
end
stepforward!(prob, diags, save_substeps)
SingleLayerQG.updatevars!(prob)
if clock.step % save_substeps == 0
saveoutput(output)
end
end
savediagnostic(E, "energy", output.path)
savediagnostic(Z, "enstrophy", output.path)
step: 0000, t: 0, cfl: 0.00, E: 0.0000, Q: 0.0000, walltime: 0.00 min
step: 0500, t: 25, cfl: 0.55, E: 0.0182, Q: 2.6371, walltime: 0.04 min
step: 1000, t: 50, cfl: 0.61, E: 0.0293, Q: 2.8787, walltime: 0.06 min
step: 1500, t: 75, cfl: 0.67, E: 0.0364, Q: 2.8105, walltime: 0.08 min
step: 2000, t: 100, cfl: 0.87, E: 0.0403, Q: 2.6290, walltime: 0.10 min
step: 2500, t: 125, cfl: 0.83, E: 0.0433, Q: 2.7528, walltime: 0.11 min
step: 3000, t: 150, cfl: 0.91, E: 0.0446, Q: 2.6793, walltime: 0.13 min
step: 3500, t: 175, cfl: 0.77, E: 0.0455, Q: 2.6078, walltime: 0.15 min
step: 4000, t: 200, cfl: 0.71, E: 0.0455, Q: 2.6548, walltime: 0.17 min
step: 4500, t: 225, cfl: 0.78, E: 0.0458, Q: 2.6460, walltime: 0.19 min
step: 5000, t: 250, cfl: 0.89, E: 0.0473, Q: 2.7878, walltime: 0.21 min
step: 5500, t: 275, cfl: 0.90, E: 0.0480, Q: 2.7345, walltime: 0.23 min
step: 6000, t: 300, cfl: 0.87, E: 0.0482, Q: 2.8067, walltime: 0.25 min
step: 6500, t: 325, cfl: 0.74, E: 0.0478, Q: 2.7029, walltime: 0.27 min
step: 7000, t: 350, cfl: 0.86, E: 0.0461, Q: 2.5248, walltime: 0.29 min
step: 7500, t: 375, cfl: 0.78, E: 0.0465, Q: 2.6692, walltime: 0.31 min
step: 8000, t: 400, cfl: 0.74, E: 0.0456, Q: 2.5986, walltime: 0.33 min
Load saved output and visualize
We now have output from our simulation saved in singlelayerqg_forcedbeta.jld2
which we can load to create a time series for the fields we are interested in.
file = jldopen(output.path)
iterations = parse.(Int, keys(file["snapshots/t"]))
t = [file["snapshots/t/$i"] for i ∈ iterations]
qh = [file["snapshots/qh/$i"] for i ∈ iterations]
u = [file["snapshots/u/$i"] for i ∈ iterations]
E_t = file["diagnostics/energy/t"]
Z_t = file["diagnostics/enstrophy/t"]
E_data = file["diagnostics/energy/data"]
Z_data = file["diagnostics/enstrophy/data"]
x, y = file["grid/x"], file["grid/y"]
nx, ny = file["grid/nx"], file["grid/ny"]
Lx, Ly = file["grid/Lx"], file["grid/Ly"]
close(file)
We create a figure using Makie's Observable
s
n = Observable(1)
qₙ = @lift irfft(qh[$n], nx)
ψₙ = @lift irfft(- Array(grid.invKrsq) .* qh[$n], nx)
q̄ₙ = @lift real(ifft(qh[$n][1, :] / ny))
ūₙ = @lift vec(mean(u[$n], dims=1))
title_q = @lift @sprintf("vorticity, μt = %.2f", μ * t[$n])
energy = Observable([Point2f(E_t[1], E_data[1])])
enstrophy = Observable([Point2f(Z_t[1], Z_data[1])])
fig = Figure(resolution=(1000, 600))
axis_kwargs = (xlabel = "x",
ylabel = "y",
aspect = 1,
limits = ((-Lx/2, Lx/2), (-Ly/2, Ly/2)))
axq = Axis(fig[1, 1]; title = title_q, axis_kwargs...)
axψ = Axis(fig[2, 1]; title = "streamfunction ψ", axis_kwargs...)
axq̄ = Axis(fig[1, 2],
xlabel = "zonal mean vorticity",
ylabel = "y",
aspect = 1,
limits = ((-3, 3), (-Ly/2, Ly/2)))
axū = Axis(fig[2, 2],
xlabel = "zonal mean u",
ylabel = "y",
aspect = 1,
limits = ((-0.5, 0.5), (-Ly/2, Ly/2)))
axE = Axis(fig[1, 3],
xlabel = "μ t",
ylabel = "energy",
aspect = 1,
limits = ((-0.1, 4.1), (0, 0.055)))
axZ = Axis(fig[2, 3],
xlabel = "μ t",
ylabel = "enstrophy",
aspect = 1,
limits = ((-0.1, 4.1), (0, 3.1)))
heatmap!(axq, x, y, qₙ;
colormap = :balance, colorrange = (-8, 8))
levels = collect(-0.32:0.04:0.32)
contourf!(axψ, x, y, ψₙ;
levels, colormap = :viridis, colorrange = (-0.22, 0.22))
contour!(axψ, x, y, ψₙ;
levels, color = :black)
lines!(axq̄, q̄ₙ, y; linewidth = 3)
lines!(axq̄, 0y, y; linewidth = 1, linestyle=:dash)
lines!(axū, ūₙ, y; linewidth = 3)
lines!(axū, 0y, y; linewidth = 1, linestyle=:dash)
lines!(axE, energy; linewidth = 3)
lines!(axZ, enstrophy; linewidth = 3, color = :red)
fig
We are now ready to animate all saved output.
frames = 1:length(t)
record(fig, "singlelayerqg_betaforced.mp4", frames, framerate = 16) do i
n[] = i
energy[] = push!(energy[], Point2f(μ * E_t[i], E_data[i]))
enstrophy[] = push!(enstrophy[], Point2f(μ * Z_t[i], Z_data[i]))
end
This page was generated using Literate.jl.